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a b s t r a c t

In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The
methodology is based on computing residuals, indicators that are obtained comparing measured inputs
and outputs with analytical relationships, which are obtained by system modelling. The innovation of
this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the
results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include
resented at CONAPPICE 2008, Zaragoza,

pain, 24–26 September 2008

eywords:
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a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding
to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate
all the faults in the proposed set in contrast with other well known methodologies which use the binary
signature matrix of analytical residuals and faults.

© 2008 Elsevier B.V. All rights reserved.
ault detection
ault diagnostic

. Introduction

The energy generation systems based on fuel cells are complex
ince they involve thermal, fluidic and electrochemical phenomena.
oreover, they need a set of auxiliary elements (valves, compres-

or, sensors, regulators, etc.) to make the fuel cell works at the
re-established optimal operating point. For these reasons, they are
ulnerable to faults that can cause the stop or the permanent dam-
ge of the fuel cell. To guarantee the safe operation of the fuel cell
ystems, it is necessary to use systematic techniques, like the recent
ethods of fault tolerant control (FTC), which allow to increase

he fault tolerance of this technology described in [1,2]. The first
ask to achieve active tolerant control consists of the inclusion of a
ault diagnosis system operating in real-time. The diagnosis system
hould not only allow the fault detection and isolation but also to
he fault magnitude estimation. In this paper, a model-based fault
iagnosis is proposed as a way to diagnose faults in fuel cell systems.
he model-based fault diagnosis is based on comparing on-line the
eal behaviour of the monitored systems obtained by means of sen-
ors with a dynamic model of the same simulated system. In case of

significant discrepancy (residual) is detected between the model
nd the measurements obtained by the sensors the existence of a
ault is assumed. If a set of measurements is available, it is possible
o generate a set of residuals (indicators) that present a different

∗ Corresponding author. Tel.: +34 937398144; fax: +34 937398628.
E-mail address: teresa.escobet@upc.edu (T. Escobet).

378-7753/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2008.12.014
sensitivity to the set of possible faults. Analyzing in real-time how
the faults affect to the residuals, it is possible, in some case, to iso-
late the fault, and even in some cases it is also possible to determine
its magnitude. The innovation of the proposal of this paper is based
on the use of the residual fault sensitivity analysis that allows to
isolate faults that otherwise would not be separable.

The structure of this paper is the following: in Section 2,
the foundations of the proposed fault diagnosis methodology are
recalled. In Section 3, the proposed model-based fault diagnosis
methodology is described. In Section 4, the PEM fuel cell system
used to illustrate the proposed fault diagnosis methodology is pre-
sented with the fault scenarios that can appear. Finally, in Section
5, the application results of the proposed methodology of diagnosis
are presented.

2. Foundations of the fault diagnosis methodology

2.1. Model-based fault diagnosis

The methodology of fault diagnosis which is used in this work is
mainly based on classic theory of model-based diagnosis described
for example in [3–6]. Model-based diagnosis can be divided in
two subtasks: fault detection and fault isolation. The principle of

model-based fault detection is to check the consistency of observed
behaviour while fault isolation tries to isolate the component that
is in fault.

The consistency check is based on computing residuals, r(k). The
residuals are obtained from measured input signals u(k) and out-

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:teresa.escobet@upc.edu
dx.doi.org/10.1016/j.jpowsour.2008.12.014
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observed relative sensitivities using Eq. (5), as a ratio of residuals,
which will provide a vector in the space of relative sensitivities. The
vector generated will be compared with vectors of theoretical faults
stored into the relative sensitivity matrix FSMsensit rel. The theo-
retical fault signature vector with a minimum distance with respect

Table 1
Theoretical fault signature matrix using relative sensitivity with respect to r1.

f1 f2 . . . fn

r2/r1 Srel,teo Srel,teo . . . Srel,teo
T. Escobet et al. / Journal of P

uts y(k) using the sensors installed in the monitored system and
he analytical relationship which are obtained by system modeling:

(k) = � (y(k), u(k)) (1)

here  is the residuals generator function that depends on the
ype of detection strategy used (parity equation [3] or observer [7]).
t each time instance, k, the residual is compared with a threshold
alue (zero in ideal case or almost zero in real case). The threshold
alue is typically determined using statistical or set-based methods
hat take into account the effect of noise and model uncertainty
1]. When a residual is bigger than the threshold, it is determined
hat there is a fault in the system; otherwise, it is considered that
he system is working properly. In practice, because of input and
utput noise, nuisance inputs and modelling errors affecting to the
onsidered model, robust residuals generators must be used. The
obustness of a fault detection system means that it must be only
ensitive to faults, even in the presence of model–reality differences
7].

Robustness can be achieved at residual generation (active) or
valuation phase (passive). Most of the passive robust residual eval-
ation methods are based on an adaptive threshold changing in
ime according to the plant input signal and taking into account

odel uncertainty either in the time or frequency domain [8]. In
his paper, a passive method in time domain has been proposed for
obust fault detection in time domain, where the detection thresh-
ld has been obtained using statistical techniques.

Robust residual evaluation allows obtaining a set of fault signa-
ures�(k) = [�1(k), �2(k), . . . , �n� (k)], where each indicator of fault
s obtained as follows:

i(k) =
{

0 if
∣∣ri(k)∣∣ ≤ �i

1 if
∣∣ri(k)∣∣> �i (2)

here �i is the threshold associated to the residual ri(k).
Fault isolation consists in identifying the faults affecting the sys-

em. It is carried out on the basis of fault signatures,�, (generated by
he detection module) and its relation with all the considered faults,
(k) = {f (k)1, f2(k), . . . , fnf (k)}. The method most often applied is
relation defined on the Cartesian product of the sets of faults

SM ⊂� x f, where FSM is the theoretical signatures matrix [3]. One
lement of that matrix FSMij will be equal to one, if a fault fj(k),
s affected by the residual ri(k). In this case, the value of the fault
ndicator �i(k) must be equal to one when the fault appears in the

onitored system. Otherwise, the element FSMij will be zero.

.2. Fault sensitivity analysis

The isolation approaches presented in previous section uses a
et of binary detection tests to compose the observed fault signa-
ure. When applying this methodology to dynamic systems, since
hey may exhibit symptoms with different dynamics, the use of
inary codification of the residual produces lose of information [9].
his can be the origin of false isolation decisions, especially when
ome detection tests have a transient behaviour (as in dynamic
low/delayed systems) in response to the faults. Also, in complex
ystems, some faults could present the same theoretical binary fault
ignature not allowing fault isolation. In both cases, it is possible to
se other additional information associated with the relationship
etween the residuals and faults, as the sign, sensitivity, order or
ime activation, to improve the isolation results [9].

In this work, it is proposed the use of information provided by
he fault residual sensitivity in the design of the diagnosis system

n order to increase fault isolability. According to [3], the sensitivity
f the residual to a fault is given by:

f = ∂r

∂f
(3)
ources 192 (2009) 216–223 217

which is a transfer function that describes the effect on the residual,
r, of a given fault f. Sensitivity provides a quantitative information of
the effect of the fault on the residual and a qualitative information
in their sense of variation (sign). The use of this information at the
stage of diagnosis will allow separate faults that even presenting the
same theoretical binary fault signature, presenting, qualitatively or
quantitatively, different sensitivities.

In order to perform diagnosis, the algorithm will use the the-
oretical signatures FSMsensit. FSMsensit, as any FSM, has a matrix
structure with the residual sensitivity in the row and the faults in
columns, each value of this matrix will be notice as Srifj . Although
sensitivity depends on time in case of a dynamic system, here the
steady-state value after a fault occurrence is considered as it is also
suggested in [3]. The theoretical value of Srifj describes how easily a
fault will cause a violation of the threshold of the ith residual since
the larger its partial derivative with respect to the fault fj, the more
sensitive that equation is to deviations of the assumption. It can
computed analytically using Eqs. (1) and (3) or in simulation.

In order to perform real time diagnosis, the observed sensitivity
Sobs
rifj

should be computed using the current value of the residuals

ri(k) when a fault f(k) is detected:

ri(k) = Sobs
rifj
f (k) (4)

3. The proposed fault diagnosis methodology

From Eq. (4), it can be seen that using FSMsensit in real time
requires the knowledge of the fault magnitude or make an esti-
mation of it. To solve this problem, this paper attempts to design
the diagnosis using the new concept of relative sensitivity rather
than absolute sensitivity giving in Eq. (3). The observed relative fault
sensitivity is defined as:

Srel,obs =
Srifj
Sr1fj

= ri(k)fj(k)
r1(k)fj(k)

= ri(k)
r1(k)

(5)

which corresponds to the ratio of one residue ri(k) with another one,
for example r1(k). Then, the relative sensitivity will be insensitive
to the magnitude of that unknown fault.

Using the concept of relative sensitivity, it is proposed a new
FSM, called FSMsensit rel, which corresponds to theoretical fault sig-
nature matrix based on relative sensitivities. One element of the
theoretical fault signature matrix on sensitivity Srel,teo

rir1fj
, is given by:

Srel,teo
rir1fj

=
Srifj
Sr1fj

= ∂ri(k)/∂fj(k)
∂r1(k)/∂fj(k)

(6)

In the case of a set of n faults, a relative fault sensitivity matrix
FSMsensit rel should be used as the one shown in Table 1.

The diagnostic algorithm will be used to assess real-time
r1r1 f1 r2r1 f2 r2r1 fn

r3/r1 Srel,teo
r3r1 f1

Srel,teo
r3r1 f2

. . . Srel,teo
r3r1 fn

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
rm/r1 Srel,teo

rmr1 f1
Srel,teo
rmr1 f2

. . . Srel,teo
rmr1 fn
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o the fault observed vector is postulated as the possible fault:

in{df1 (k), . . . , dfn (k)} (7)

here the distance is calculated using the Euclidean distance
etween vectors:

fi
(k) =

√
(Srel,obs
r2r1fi

− Srel,teo
r2r1fi

)
2 + · · · + (Srel,obs

rmr1fi
− Srel,teo

rmr1fi
)
2

(8)

. Application to a PEM fuel cell system

.1. Description of the PEM fuel cell system

To show the validity of the proposed model-based fault diagno-
is approach proposed in this paper when applied to a PEM fuel cell
ystem (PEMFC), the well known simulator developed by Pukrush-
an et al. [10] is used. The main components of this system (Fig. 1)
re the fuel stack, the compressor, the inlet and outlet air man-
fold, the inlet and outlet hydrogen manifold and the humidifier.
he air supply system (compressor and air collector) has as pri-
ary objective maintaining a constant partial pressure of oxygen

n the cathode outlet. One important variable is the oxygen excess
atio which is defined as:

O2 = WO2,supplied

WO2,reacted
= xO2 Wair,supplied

MO2nIfc/4F
(9)

here xO2 is the oxygen molar mass fraction, Wair,supplied is the mass
ow rate of air that is supplied to the fuel cell, MO2 is the oxygen
olar mass, n is the cell number in the stack, Ifc is the stack current,

nd F is the Faraday number.

The aforementioned model is a control oriented model for con-

rol applications, which includes the transient phenomenon of the
ompressor, the manifold filling dynamics (both anode and cath-
de), reactant partial pressures, and membrane humidity. The stack
oltage predicted by the model depends on load current, partial
tem scheme.

pressure of hydrogen and oxygen, fuel cell temperature and the con-
tents of water in the membrane. Spatial variations are not included
and constant properties are assumed in all volumes. Only tempo-
rary variations are present. The model also assumes that the inlet
reactant flows in the cathode and in the anode can be humidified,
heated and cooled instantaneously. With respect to the considered
dynamics, the model neglects the fast dynamics of the electrochem-
ical reactions (time constant of 10−19 s). Temperature is treated as a
constant parameter because the slow behaviour (time constant of
102 s), allowing to be regulated by its own (slower) controller. The
model represents a 75-kW fuel cell system with 381 cells.

The system has two control loops: the internal loop takes the
control of the hydrogen flow and the external loop takes the con-
trol of the oxygen excess ratio�O2 , as an indirect measure to control
the efficiency of the PEMFC, as proposed in [10,11]. The aim of the
hydrogen flow control is to minimize the differential between the
anode pressure and the cathode pressure. The regulation of �O2 is
achieved by manipulating the compressor motor voltage and the
output cathode valve. The stack current Ifc, is regarded as a mea-
sured disturbance to the system. The control of�O2 is achieved using
dynamic matrix control (DMC), a control technique that is applied
and explained in detail in [11]. The system also provides measures
of the compressor current, Icm, and its speed, ωcm. Fig. 1 shows an
outline of the PEMFC system, along with the variables available for
control and supervision over it.

4.2. Inclusion of the faults in the PEM simulator

In this paper, the PEM fuel cell system simulator developed in
[10] has been modified in order to include a set of typical faults.

The faults are described in Table 2 and the description of how
they were implemented in the simulator is explained in the fol-
lowing.

The fault f1 is simulated with an increment �kv in the com-
pressor constant kv and, similarly, the fault f2 is simulated with an
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Table 2
Description of the fault scenarios.

Fault Description

f1 Increase in the friction in the compressor motor
f2 The compressor motor suffers an overheating
f3 The fluid resistance increases due to water blocking the channels or

flooding in the diffusion layer
f4 Air leak in the air supply manifold
f5 Increase in the voltage value below which the compressor motor does
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Table 3
Theoretical fault signature matrix FSM using binary and sign information.

f1 f2 f3 f4 f5 f6

r1 (−)1 (−)1 (−)1 (−)1 1 (−)1
r2 (−)1 (−)1 (−)1 (−)1 1 1
r3 (−)1 (−)1 (−)1 (−)1 1 (−)1
r4 (−)1 (−)1 1 1 1 1

Table 4
Theoretical fault signature matrix FSMsensit rel.

f1 f2 f3 f4 f5 f6
not turn

6 Increase in the stack temperature due to a failure in the temperature
controller

ncrement�Rcm in the compressor motor resistance Rcm. Both faults
re translated in a change in the compressor torque �cm:

cm = 	cmkt
Rcm +�Rcm (vcm − (kv +�kv)ωcm) (10)

here	cm is the motor mechanical efficiency, kt is a motor constant,
nd ωcm is the compressor speed. The fault f3 is simulated with an
ncrement �Wca,out in the orifice constant of the cathode output,
ca,out, which produces a change in the outlet air flow in the cathode,

ca,out:

ca,out = (kca,out +�kca,out)(pca − prm) (11)

here pca is the cathode pressure and pm is the return manifold
ressure. The fault f4 is simulated with an increment �ksm,out in
he supply manifold outlet flow constant ksm,out, which is translated
nto a change in the outlet air flow in the supply manifold, Wsm,out:

sm,out = (ksm,out +�ksm,out)(psm − pca) (12)

here psm is the supply manifold pressure.
The fault f5 is simulated with an increment in the lower volt-

ge, Vcm,low, that the controller supplies to the compressor motor,
boundary that also influences the compressor torque in Eq. (10).
he fault f6 is simulated with an increment �Tfc in the stack tem-
erature Tfc, which has an impact on the open circuit voltage of
he stack, the partial of gases, the relative humidity, and the water
iffusion coefficient in the membrane. The open circuit voltage E

s:

= 1.229 − 0.85 × 10−3(Tfc +�Tfc − 298.15)

+ 4.3085 × 10−5(Tfc +�Tfc)[ln(pH2 ) + 0.5 ln(pO2 )] (13)

here pH2 and pO2 are the partial pressure of hydrogen and oxy-
en, respectively. The partial of gases pi in the anode is:

i,an = mi,anRi(Tfc +�Tfc)
Van

(14)

here the subscript i is either H2-hydrogen or v-vapor, m is the
olar mass, R is the gas constant, and Van is the anode volume. The

artial pressure of gases in the cathode is:

mi,caRi(Tfc +�Tfc)

i,ca =

Vca
(15)

here the subscript I is O2-oxygen, N2-nitrogen or v-vapor and Vca

s cathode volume. The relative humidity �j is:

j = pv,j

psat(Tfc +�Tfc)
(16)

here the subscript j is either an-anode or ca-cathode and the
aturation pressure of vapor is calculatedusing the following
r2/r1 1 0.824 0.118 0.643 0.036 −0.221
r3/r1 0.854 1 0.197 0.206 0.039 0.151
r4/r1 1 0.937 −0.128 −0.134 0.168 −0.098

expression:

log10(psat) = −1.69 × 10−10 T4
fc + 3.85 × 10−7 T3

fc

− 3.39 × 10−4 T2
fc + 0.14 Tfc − 20.92 (17)

where the pressure is in kPa and the temperature is in Kelvin. The
stack temperature also affects the water diffusion coefficient in the
membrane:

Dw = D� exp

(
2416

(
1

303
− 1
Tfc +�Tfc

))
(18)

where D� is a constant, which depends on the water content in the
membrane.

4.3. Residual generation and fault sensitivity analysis

The set of measured variables are �O2 , ωcm, Icm and Vst. Using
these variables and the non-linear model presented in [10], four
residuals can be derived:

r1 = �O2 − �̂O2 , r2 = Vst − V̂st, r3 = Icm − Îcm,
r4 = ωcm − ω̂cm (19)

Using the PEMFC fault simulator including faults described in Sec-
tion 4.2, it has been determined experimentally if the faults defined
in Table 2 affect or not each of the previous residuals. From these
results, the theoretical binary fault signature matrix presented in
Table 3 can be derived. It can be noticed that all the considered
faults affect all the residuals. Thus, the faults are not diagnosable.
Even taking into account how the residual sign is affected by faults,
not all the faults are diagnosable: f1 cannot be distinguished from
f2 and f3 from f4.

Alternatively using the relative fault sensitivity (5), the fault
signature table FSMsensit rel can be calculated. The values of this
matrix are shown in Table 41. It can be noticed that in this case all
the considered faults are isolable since the following condition is
satisfied:

Srel,teo
rir1fj

/= Srel,teo
rir1fk

for all j /= k (20)

This can be seen by representing the values of the theoretical fault

signatures (see Fig. 2) in the three-dimensional space r2/r1, r3/r1,
and r4/r1. Since there is no overlapping, the six faults can be detected
and isolated and thus, can be diagnosed.

1 This table has been derived from PEMFC in the normal operating point.
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Fig. 2. Theoretical fault signature matrix in the residual space.

.4. Implementation of the fault diagnosis system in simulation

The implementation of the fault diagnosis approach proposed
n Section 3 is done in the MATLAB/SIMULINK environment. The
uel cell simulator used is the one developed in [12] at the Uni-

ersity of Michigan, but it is modified to allow the inclusion of
he faults described in Section 4.2. In this simulator (see Fig. 3),
t is possible to reproduce any of the faults presented in Table 2.
he set of available measurements are compared with their pre-
icted value using a non-faulty fuel cell model. The differences

Fig. 3. Implementation of the fault d
ources 192 (2009) 216–223

between the predicted and measured values generate a set of resid-
uals that are sent to the fault diagnosis system. When a fault
appears, the residuals that are sensitive to this fault take a value
different from zero. When some of the residual values cross the
detection threshold, the fault diagnosis starts reasoning with all
the violated residuals. The reasoning (described in Section 3) is
based on computing the minimum distance between the observed
fault signature and theoretical one. The fault that approaches the
most to one of the fault signatures is the one indicated as a possible
fault.

5. Results

In order to evaluate the model-based fault diagnosis methodol-
ogy proposed in this paper, the fault scenarios and fault simulator
presented in Section 4 have been used. In this section, results of two
of the proposed fault scenarios (f1 and f2) are presented. The results
obtained in the other fault scenarios, although they have not been
included in this paper, were also satisfactory allowing in all cases
the right isolation of the faults.

5.1. Fault scenario f1

As discussed in previous sections, the fault detection is based on
checking at every time the difference (residual) between the sig-
nals monitored by a sensor and its estimation using the detection
model (19). Fig. 4(a) shows the temporal evolution of the residuals
and the detection threshold for each of them. The fault is introduced

into the system at time 50 s creating changes in its internal dynam-
ics and sometimes after all the fault signals crosses they detection
threshold (dash line) activating the four indicators of fault, as has
been defined in Eq. (2). Fig. 4(b) illustrates the time the diagnosis
system takes for detecting and isolating the fault f1. The detection

iagnosis system in simulation.
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Fig. 4. (a) Time evolution of the residual corresponding to fault f1, (b) T

ubsystem stores the fault at the time that one of the thresholds is
iolated by any of the residuals and, as soon as it is detected that
fault is presented, the isolation process begins. The isolation pro-

ess is based on evaluating the distance of the observed relative
ault sensitivity vector to the theoretical ones.

Fig. 5(a) shows the location of the faults in the space of ratios
sing the relative fault sensitivities matrix, described in Section
, and the time evolution of the minimum distance between the
bserved and theoretical relative fault sensitivity (7) (drawn in con-
inuous line).

Fig. 5(b) presents the Euclidean distance between the observer

nd the theoretical sensitivity fault signatures for each fault (8). It
an be noticed that since fault f1 has a similar fault signature as f2
see also Table 4) at the beginning of the fault isolation process f2
s the fault proposed as the possible fault (since presents a smaller
istance than f1). However, from time instant 82 s, f1 can be isolated.

ig. 5. (a) Time evolution of the minimum distance (7) for fault f1, (b) Time evolution of t
ault.
volution of fault detection and isolation indicators corresponding to f1.

It is seen that the proposed methodology, after some isolation time
delay, allows isolate the true fault.

5.2. Fault scenario f2

Fig. 6(a) shows the dynamic evolution of residuals when the fault
f2 appears in the system, it is seen that residuals have the same
information than f1. Fig. 6(b) illustrates the detection and isolation
indicators corresponding to fault f2. The process of isolation before
the fault f2 needs more processing time because of the similarity
between the fault signatures f1 and f2.
Fig. 7(a) shows the location of faults in space ratios using
the matrix of theoretical fault signatures and the time evolution of
the minimum distance corresponding to fault f2, Fig. 7(b) shows the
distance of the observed fault signature vector compared with the
theoretical fault signature ones. It can be seen that the fault f2 can

he distance between the observed and theoretical relative fault sensitivity for each
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Fig. 6. (a) Time evolution of residual corresponding to fault f2, (b) Time evolution of fault detection and isolation indicators corresponding to f2.
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ig. 7. (a) Time evolution of the minimum distance for fault f2, (b) Time evolution of

e clearly isolated, because always corresponds with the minimum
istance value.

. Conclusions

In this paper, a new model-based fault diagnosis methodol-
gy based on the relative fault sensitivity has been presented and
ested. An advantage of this new methodology is that it does not
equire the knowledge of the fault magnitude to provide a diagnos-
ic. Furthermore, it allows isolate faults although all the considered
aults affect all the residuals whenever the sensitivities were
ifferent.

To prove this methodology, a PEM fuel cell simulator based on
he model presented in the literature has been developed. The sim-
lator was modified to include a set of possible fault scenarios
roposed in this work. This modified simulator allows imposing
determined fault scenario, within the considered set of faults in

he PEMFC and analysing its behaviour. All the simulated faults

ave been tested with the new diagnosis methodology, which has
iagnosed correctly the simulate faults in contrast with other well
nown methodologies using binary signature matrix of analytical
esiduals and faults, which do not permit to isolate the complete
et of faults.
stance between the observed and theoretical relative fault sensitivity for each fault.
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